skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Constantin, Andrei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We study a class of supersymmetric Froggatt-Nielsen (FN) models with multiple U(1) symmetries and Standard Model (SM) singlets inspired by heterotic string compactifications on Calabi-Yau threefolds. The string-theoretic origin imposes a particular charge pattern on the SM fields and FN singlets, dividing the latter into perturbative and non-perturbative types. Employing systematic and heuristic search strategies, such as genetic algorithms, we identify charge assignments and singlet VEVs that replicate the observed mass and mixing hierarchies in the quark sector, and subsequently refine the Yukawa matrix coefficients to accurately match the observed values for the Higgs VEV, the quark and charged lepton masses and the CKM matrix. This bottom-up approach complements top-down string constructions and our results demonstrate that string FN models possess a sufficiently rich structure to account for flavour physics. On the other hand, the limited number of distinct viable charge patterns identified here indicates that flavour physics imposes tight constraints on string theory models, adding new constraints on particle spectra that are essential for achieving a realistic phenomenology. 
    more » « less
    Free, publicly-accessible full text available June 18, 2026
  2. He, Yang-Hui; Ge, Mo-Lin; Bai, Cheng-Ming; Bao Jiakang; Hirst, Edward (Ed.)
    Vector bundle cohomology represents a key ingredient for string phenomenology, being associated with the massless spectrum arising in string compactifications on smooth compact manifolds. Although standard algorithmic techniques exist for performing cohomology calculations, they are laborious and ill-suited for scanning over large sets of string compactifications to find those most relevant to particle physics. In this article we review some recent progress in deriving closed-form expressions for line bundle cohomology and discuss some applications to string phenomenology. 
    more » « less